
 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI-Std Z39-18 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
03/01/2012 

2. REPORT TYPE 
Annual Progress/Status 

3. DATES COVERED (From - To) 
05/2010-05/2011 

4. TITLE AND SUBTITLE 
Strongly Interacting Fermi Gases in Two Dimensions 

5a. CONTRACT NUMBER 
NA 

5b. GRANT NUMBER 
N00014-10-1-0843 

5c. PROGRAM ELEMENT NUMBER 
      

6. AUTHOR(S) 
Zwierlein, Martin W 

5d. PROJECT NUMBER 
      

5e. TASK NUMBER 
      

5f. WORK UNIT NUMBER 
      

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Massachusetts Institute of Technology 
77 Massachusetts Avenue 
Cambridge, MA 02139 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
      

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Office of Naval Research 
875 North Randolph Street 
Arlington, VA 22203-1995 

10. SPONSOR/MONITOR'S ACRONYM(S) 
ONR BD025 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
      

12. DISTRIBUTION AVAILABILITY STATEMENT 
Approved for Public Release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
      

14. ABSTRACT 
In this project we aim to directly realize a model system of strongly correlated electrons moving in two dimensions using 
ultracold fermionic atoms stored in a sheet of light. The goal is to create high-temperature superfluids in two dimensions, 
to establish interferometry and magnetometry with these systems, and to study the phase diagram of two-dimensional 
Fermi gases with arbitrary interactions and spin imbalance. Fast rotation will mimic high magnetic fields and allow the 
approach to the Quantum Hall regime. The system shares traits with High-Tc materials, where super currents flow 
between stacks of weakly connected two dimensional planes. 
This year has seen rather spectacular progress where transport of Fermions has been studied, in work that we published 
in Nature. Recently, we were able to study the evolution of fermion pairing from three to two dimensions. 

15. SUBJECT TERMS 
Ultracold Atoms, Fermi Gases, Strong Interactions, Lower Dimensions, Strongly Correlated Materials, Quantum 
Simulators, Superconductivity 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
SAR 

18. NUMBER 
OF PAGES.....  

19a. NAME OF RESPONSIBLE PERSON 
      

a. REPORT 
UU 

b. ABSTRACT 
UU 

c. THIS PAGE 
      

19b. TELEPONE NUMBER (Include area code) 
      



 
 

                                                              

Young Investigator Program – Office of Naval Research 
Martin W. Zwierlein, MIT 

 
Progress 06/2010-05/2011 
 
Overview 
Our group studies strongly interacting mixtures of fermionic atoms, atoms with half-integer 
spin. In these novel systems we can realize superfluids of fermion pairs and other 
paradigms of many-body physics. The goal is to improve our understanding of strongly 
correlated systems, such as high-temperature superconductors, colossal 
magnetoresistive materials and heavy fermions. 

 
1. Universal Spin Transport in a Strongly Interacting Fermi Gas 
Ariel Sommer, Mark Ku, Giacomo Roati, and Martin W. Zwierlein 

Nature 472, 201-204 (2011) 

 
Transport of fermions is central in many fields of physics. Electron transport runs modern 
technology, defining states of matter such as superconductors and insulators. Transport 
of electron spin, rather than of charge, is being explored as a new way to carry 
information. Neutrino transport energizes supernova explosions following the collapse of a 
dying star, and hydrodynamic transport of the quark-gluon plasma governed the 
expansion of the early Universe. However, our understanding of non-equilibrium dynamics 
in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic 
atoms realize a pristine model for such systems and can be studied in real time with the 
precision of atomic physics. It has been established that even above the superfluid 
transition such gases flow as an almost perfect fluid with very low viscosity when 
interactions are tuned to a scattering resonance. However, in this work we show that spin 
currents, as opposed to mass currents, are maximally damped, and that interactions can 
be strong enough to reverse spin currents, with opposite spin components reflecting off 
each other. We determine the spin drag coefficient, the spin diffusivity, and the spin 
susceptibility, as a function of temperature on resonance and show that they obey 
universal laws at high temperatures. At low temperatures, the spin diffusivity approaches 
a minimum value set by h/m, the quantum limit of diffusion, where h is Planck's constant 
and m the atomic mass. For repulsive interactions, our measurements appear to exclude 
a metastable ferromagnetic state. 
 
This work was featured in a Physics Today article, June 2011, by Barbara Gross-Levi, as 
well as in a Nature News&Views article by John Thomas.  
 



 
Figure 1 Observation spin reflection in a resonant collision between two oppositely spin-polarized 
clouds of fermions. a) shows the total column density and b) the difference in column densities of 
the two clouds (red: spin up, blue: spin down), after the magnetic field is set to the Feshbach 
resonance. The collision leads to the formation of a high-density interface between the two spin 
states. c) The separation between the centers of mass of the two spin states initially oscillates at a 
frequency of 1.63(2) nz, where nz = 22.8 Hz is the axial trap frequency. Even after half a second, 
there is still substantial spin separation. The diffusion time indicates a diffusivity on the order of h/m. 
d) Shows the harmonic trapping potential along the axis of symmetry. 
 
 
2. Universal Spin Transport in Polaronic and Superfluid Fermi Gases 
Ariel Sommer, Mark Ku, and Martin W. Zwierlein, 

New Journal of Physics 13, 055009 (2011) 

In this work, we present measurements of spin transport in ultracold gases of fermionic 
Lithium-6 in a mixture of two spin states at a Feshbach resonance. In particular, we study 
the spin-dipole mode, where the two spin components are displaced from each other 
against a harmonic restoring force. We prepare a highly imbalanced, or polaronic, spin 
mixture with a spin-dipole excitation and we observe strong, unitarity-limited damping of 



 
 

                                                              

the spin-dipole mode. In gases with small spin imbalance, below the Pauli limit for 
superfluidity, we observe strongly damped spin flow even in the presence of a superfluid 
core. This indicates strong mutual friction between superfluid and polarized normal spins, 
possibly involving Andreev reflection at the superfluid–normal interface. 
This work was chosen as an IOP Select for the NJP Focus issue on Strongly Correlated 
Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. 
 
 

 
Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting Fermi Gases. Shown is the 
relaxation time of the spin-dipole mode in a strongly interacting, trapped Fermi gas, as a function of 
the reduced temperature T/TF,up, where TF,up is the Fermi energy of the majority spin up Fermi sea. 
At high temperatures, the classical prediction (dashed line) produces a good description of the data, 
whereas at low temperatures, Pauli pressure leads to a strong reduction of the relaxation time. The 
solid line is a prediction for the homogeneous gas. 
 
3. Evolution of Fermion Pairing from Three to Two Dimensions 
Ariel T. Sommer, Lawrence W. Cheuk, Mark Jen-Hao Ku, Waseem S. Bakr, Martin W. 
Zwierlein 
 
Physical Review Letters, in print, preprint arXiv:1110.3058 (2011) 
 
Interacting fermions in coupled two-dimensional (2D) layers present unique physical 
phenomena and are central to the description of unconventional superconductivity in high-
transition-temperature cuprates and layered organic conductors. Reduced dimensionality 
enhances the effect of fluctuations, while interlayer coupling can stabilize 
superconductivity and even amplify the transition temperature. A fermionic superfluid 
loaded into a periodic potential should form stacks of two-dimensional superfluids with 
tunable interlayer coupling, a key ingredient of the model proposed by Anderson to 
explain high transition temperatures observed in the cuprates. For deep potentials in the 
regime of uncoupled 2D layers, increasing the temperature of the gas is expected to 
destroy superfluidity through the Berezinskii-Kosterlitz-Thouless mechanism, while more 
exotic multi-plane vortex loop excitations are predicted for a 3D-anisotropic BCS 
superfluid near the critical point. 



In this work, we studied fermion pairing across the crossover from 3D to 2D in a periodic 
potential of increasing depth. We follow the evolution of fermion pairing in the dimensional 
crossover from 3D to 2D as a strongly interacting Fermi gas of 6Li atoms becomes 
confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. 
Decreasing the dimensionality leads to the opening of a gap in radiofrequency spectra, 
even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the 
measured binding energy Eb of fermion pairs increases in surprising agreement with 
mean-field theory for the BEC-BCS crossover in two dimensions. 
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Journal Articles 

1. Cheng-Hsun Wu, Ibon Santiago, Jee Woo Park, Peyman Ahmadi, and Martin W. 
Zwierlein 
Strongly Interacting Isotopic Bose-Fermi Mixture Immersed in a Fermi Sea 

PRA 84, 011601(R) (2011) 
 

2. Ariel Sommer, Mark Ku, and Martin W. Zwierlein 
Spin Transport in Polaronic and Superfluid Fermi Gases 

Figure 3 Evolution of Fermion Pairing from Three to Two Dimensions. Radio-Frequency Spectra 
show the opening of a pairing gap as the Fermi Gas is more and more confined to two dimensions. 
V0 denotes the strength of the optical lattice used to confine the gas, in units of the recoil energy ER 
of a 6Li atom in the lattice. 
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See accompanying Nature News&Views by John Thomas 
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Bound states of a localized magnetic impurity in a superfluid of paired ultracold 
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Overview 
Our group studies strongly interacting mixtures of fermionic atoms, atoms with half-integer 
spin. In these novel systems we can realize superfluids of fermion pairs and other 
paradigms of many-body physics. The goal is to improve our understanding of strongly 
correlated systems, such as high-temperature superconductors, colossal 
magnetoresistive materials and heavy fermions. 

 
1. Universal Spin Transport in a Strongly Interacting Fermi Gas 
Ariel Sommer, Mark Ku, Giacomo Roati, and Martin W. Zwierlein 

Nature 472, 201-204 (2011) 

 
Transport of fermions is central in many fields of physics. Electron transport runs modern 
technology, defining states of matter such as superconductors and insulators. Transport 
of electron spin, rather than of charge, is being explored as a new way to carry 
information. Neutrino transport energizes supernova explosions following the collapse of a 
dying star, and hydrodynamic transport of the quark-gluon plasma governed the 
expansion of the early Universe. However, our understanding of non-equilibrium dynamics 
in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic 
atoms realize a pristine model for such systems and can be studied in real time with the 
precision of atomic physics. It has been established that even above the superfluid 
transition such gases flow as an almost perfect fluid with very low viscosity when 
interactions are tuned to a scattering resonance. However, in this work we show that spin 
currents, as opposed to mass currents, are maximally damped, and that interactions can 
be strong enough to reverse spin currents, with opposite spin components reflecting off 
each other. We determine the spin drag coefficient, the spin diffusivity, and the spin 
susceptibility, as a function of temperature on resonance and show that they obey 
universal laws at high temperatures. At low temperatures, the spin diffusivity approaches 
a minimum value set by h/m, the quantum limit of diffusion, where h is Planck's constant 
and m the atomic mass. For repulsive interactions, our measurements appear to exclude 
a metastable ferromagnetic state. 
 
This work was featured in a Physics Today article, June 2011, by Barbara Gross-Levi, as 
well as in a Nature News&Views article by John Thomas.  
 



 
Figure 1 Observation spin reflection in a resonant collision between two oppositely spin-polarized 
clouds of fermions. a) shows the total column density and b) the difference in column densities of 
the two clouds (red: spin up, blue: spin down), after the magnetic field is set to the Feshbach 
resonance. The collision leads to the formation of a high-density interface between the two spin 
states. c) The separation between the centers of mass of the two spin states initially oscillates at a 
frequency of 1.63(2) nz, where nz = 22.8 Hz is the axial trap frequency. Even after half a second, 
there is still substantial spin separation. The diffusion time indicates a diffusivity on the order of h/m. 
d) Shows the harmonic trapping potential along the axis of symmetry. 
 
 
2. Universal Spin Transport in Polaronic and Superfluid Fermi Gases 
Ariel Sommer, Mark Ku, and Martin W. Zwierlein, 

New Journal of Physics 13, 055009 (2011) 

In this work, we present measurements of spin transport in ultracold gases of fermionic 
Lithium-6 in a mixture of two spin states at a Feshbach resonance. In particular, we study 
the spin-dipole mode, where the two spin components are displaced from each other 
against a harmonic restoring force. We prepare a highly imbalanced, or polaronic, spin 
mixture with a spin-dipole excitation and we observe strong, unitarity-limited damping of 



 
 

                                                              

the spin-dipole mode. In gases with small spin imbalance, below the Pauli limit for 
superfluidity, we observe strongly damped spin flow even in the presence of a superfluid 
core. This indicates strong mutual friction between superfluid and polarized normal spins, 
possibly involving Andreev reflection at the superfluid–normal interface. 
This work was chosen as an IOP Select for the NJP Focus issue on Strongly Correlated 
Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. 
 
 

 
Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting Fermi Gases. Shown is the 
relaxation time of the spin-dipole mode in a strongly interacting, trapped Fermi gas, as a function of 
the reduced temperature T/TF,up, where TF,up is the Fermi energy of the majority spin up Fermi sea. 
At high temperatures, the classical prediction (dashed line) produces a good description of the data, 
whereas at low temperatures, Pauli pressure leads to a strong reduction of the relaxation time. The 
solid line is a prediction for the homogeneous gas. 
 
3. Evolution of Fermion Pairing from Three to Two Dimensions 
Ariel T. Sommer, Lawrence W. Cheuk, Mark Jen-Hao Ku, Waseem S. Bakr, Martin W. 
Zwierlein 
 
Physical Review Letters, in print, preprint arXiv:1110.3058 (2011) 
 
Interacting fermions in coupled two-dimensional (2D) layers present unique physical 
phenomena and are central to the description of unconventional superconductivity in high-
transition-temperature cuprates and layered organic conductors. Reduced dimensionality 
enhances the effect of fluctuations, while interlayer coupling can stabilize 
superconductivity and even amplify the transition temperature. A fermionic superfluid 
loaded into a periodic potential should form stacks of two-dimensional superfluids with 
tunable interlayer coupling, a key ingredient of the model proposed by Anderson to 
explain high transition temperatures observed in the cuprates. For deep potentials in the 
regime of uncoupled 2D layers, increasing the temperature of the gas is expected to 
destroy superfluidity through the Berezinskii-Kosterlitz-Thouless mechanism, while more 
exotic multi-plane vortex loop excitations are predicted for a 3D-anisotropic BCS 
superfluid near the critical point. 



In this work, we studied fermion pairing across the crossover from 3D to 2D in a periodic 
potential of increasing depth. We follow the evolution of fermion pairing in the dimensional 
crossover from 3D to 2D as a strongly interacting Fermi gas of 6Li atoms becomes 
confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. 
Decreasing the dimensionality leads to the opening of a gap in radiofrequency spectra, 
even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the 
measured binding energy Eb of fermion pairs increases in surprising agreement with 
mean-field theory for the BEC-BCS crossover in two dimensions. 
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Figure 3 Evolution of Fermion Pairing from Three to Two Dimensions. Radio-Frequency Spectra 
show the opening of a pairing gap as the Fermi Gas is more and more confined to two dimensions. 
V0 denotes the strength of the optical lattice used to confine the gas, in units of the recoil energy ER 
of a 6Li atom in the lattice. 
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Abstract. We present measurements of spin transport in ultracold gases of
fermionic 6Li in a mixture of two spin states at a Feshbach resonance. In
particular, we study the spin-dipole mode, where the two spin components
are displaced from each other against a harmonic restoring force. We prepare
a highly imbalanced, or polaronic, spin mixture with a spin-dipole excitation
and we observe strong, unitarity-limited damping of the spin-dipole mode. In
gases with small spin imbalance, below the Pauli limit for superfluidity, we
observe strongly damped spin flow even in the presence of a superfluid core.
This indicates strong mutual friction between superfluid and polarized normal
spins, possibly involving Andreev reflection at the superfluid–normal interface.
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1. Introduction

The quality of transport is one of the most important properties distinguishing states of
matter. Of great technical importance, electrons in condensed matter materials can flow
as currents or supercurrents, or be localized in an insulator, or even switch their state of
conductivity through controllable parameters like an applied magnetic field. It is the task
of many-body physics to develop models that may explain the observed transport properties
in a system. Dilute atomic gases cooled to quantum degeneracy provide ideal systems for
testing many-body theories. In particular, Feshbach resonances [1] in atomic Fermi gases
allow experimental control over the strength of two-body interactions, giving access to the
Bose–Einstein condensation to Bardeen–Cooper–Schrieffer superfluid (BEC–BCS) crossover
regime [2, 3]. Transport properties have played an important role in characterizing strongly
interacting Fermi gases in the BEC-BCS crossover, with the observation of hydrodynamic flow
indicating nearly perfect fluidity [4, 5], the measurement of collective excitation frequencies
probing the equation of state [6–8], and the observation of vortex lattices in rotating gases
demonstrating superfluidity [9]. The first observations of spin transport in Fermi gases were
obtained in the weakly interacting regime, and showed the onset of Pauli blocking of
collisions [10], and the transition from collisionless to hydrodynamic behavior [11]. Spin
excitations have also been observed in Fermi gases as long-lived spin waves near zero scattering
length [12].

Here we study spin transport in strongly interacting two-component Fermi gases. Spin
currents are strongly damped in such systems due to the high collision rate between opposite
spin atoms: as two-body scattering does not conserve relative momentum, each scattering
event on average reduces the net spin current [13]. At the Feshbach resonance, scattering is
maximal, with a mean-free path between collisions of opposite spins that can be as short as one
interparticle spacing—the smallest possible in a three-dimensional (3D) gas. Measurements
of spin transport in strongly interacting Fermi gases with an equal number of atoms in two
spin states were recently reported [14]. Interactions were shown to be strong enough to reverse
spin currents, with two clouds of opposite spin almost perfectly repelling each other. The spin
diffusivity was found to reach a lower limit of the order of h̄/m at unitarity, the quantum limit
of diffusion. Here, we consider the case where the number of atoms in the two states is unequal,
and study spin transport in the polaron and phase-separated superfluid regimes. In highly
polarized systems that remain non-superfluid down to zero temperature [15–17], spin currents
are expected to become undamped due to Pauli blocking [18–20]. In this imbalanced regime,
a high-frequency mode observed after a compressional excitation was interpreted as a weakly
damped spin quadrupole (or breathing) mode [21]. The question of the damping properties of
the spin excitation and its temperature dependence was left open. Spin transport properties of
ultracold Fermi gases have been investigated theoretically most recently in [18–20], [22–24],
allowing comparison between theory and experiment.

In section 2, we present measurements of the damping rate of spin excitations in highly
polarized Fermi gases as a function of temperature. We show that damping is maximal at
finite temperatures. In section 3, we study smaller spin polarizations, below the Pauli limit
of superfluidity [15], just enough to reveal the presence of a superfluid core in the system.
We show that the spin-dipole mode is strongly damped in the presence of the superfluid. In a
partially polarized Fermi gas, damping of spin motion is expected to persist at low temperatures
due to Andreev reflection [20].

New Journal of Physics 13 (2011) 055009 (http://www.njp.org/)
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2. Highly imbalanced Fermi gases

Fermi gases with resonant interactions can remain normal down to zero temperature if the spin
imbalance exceeds the Pauli (or the Clogston–Chandrasekhar) limit [15, 16, 21, 25, 26, 39].
We refer to the spin state with the larger population of atoms as the majority, or spin-up
state, and the state with fewer atoms as the minority, or spin-down state. Radio-frequency (RF)
spectroscopy [17] on such systems confirms the quasi-particle picture [27–29] where minority
atoms are dressed by the majority Fermi sea, forming a quasi-particle known as the Fermi
polaron. The energy of a single polaron in a zero-temperature Fermi sea of spin-up atoms has
been described using the effective Hamiltonian [18, 19, 30],

H = −αµ↑ +
p2

2m∗
, (1)

where p is the momentum of the polaron, m∗ is the polaron effective mass, µ↑ is the local
spin-up chemical potential and α characterizes the polaron binding energy. The parameters α

and m∗/m, where m is the bare mass of spin-up and spin-down fermions, have been measured
experimentally [17, 21, 31, 32] and calculated theoretically [30], [33–35], giving α = 0.62 and
m∗/m ≈ 1.2 at zero temperature.

We consider a mixture of N↑ spin-up fermions and N↓ spin-down fermions at temperature
T with equal masses and resonant interactions, held in a spin-independent potential of the
form

V (ρ, z) =
1
2mω2

z z2 + Vρ(ρ), (2)

where ρ2
= x2 + y2. The spin-up (down) clouds have density n↑(↓)(r) at position r. The minority

cloud is initially displaced by a small amount Z↓(0) along the z-axis and is allowed to relax to
its equilibrium position.

In the limit N↓ � N↑, the motion of the spin-up cloud due to momentum absorbed from
the spin-down cloud may be neglected. The equation of motion of the spin-down center of mass
Z↓ is then [18]

m∗ Z̈↓ + (1 + α)mω2
z Z↓ +

m∗

N↓

∫
d3r n↓(r)

v↓(r)
τP(r)

= 0, (3)

where the factor of (1 + α) is due to the attraction of the minority fermions to the majority
cloud, 1/τP is the local momentum relaxation rate due to collisions [18] and is equivalent
to the spin drag coefficient [13, 22], and v↓ is the local drift velocity of spin-down atoms.
By dimensional analysis, h̄/τP(r) must be given by the local majority Fermi energy times a
universal dimensionless function of the local reduced temperature T/T local

F↑
(r) and the local ratio

T local
F↓

(r)/T local
F↑

(r) of the Fermi temperatures, where T local
F↑(↓)(r) is the local majority (minority)

Fermi temperature. The first two terms in (3) follow from (1), (2) and the local density
approximation, while the third term is due to damping and is not captured in (1). Equation (3)
neglects a possible back-action of the minority on the majority atoms that might deform the
majority density profile.

In our experimental realization of this transport problem, we use a gas of ultracold
fermionic 6Li atoms. The 6Li atoms are cooled sympathetically with 23Na [36] and loaded into a
hybrid optical and magnetic trap with an adjustable bias magnetic field [37]. The magnetic field
curvature provides essentially perfect harmonic confinement along the axial (z) direction, while
the optical dipole trap (laser wavelength 1064 nm, waist 115 µm) provides trapping in the radial
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directions, with negligible contribution to the axial confinement. With this system, we perform
a collection of time series measurements. In each time series, we prepare the system in a chosen
initial state and observe its evolution.

At the Feshbach resonance at 834 G, the magnetic moments of ‘spin-up’ and ‘spin-down’
atoms, the two lowest hyperfine states of 6Li, are equal to 1 part in 1000, since their electron
spin is in fact aligned with the magnetic field. Inducing a spin current is therefore extremely
challenging on resonance. However, at lower fields, their magnetic moments differ, allowing
separation of the two gas clouds by a magnetic field gradient. Our experimental procedure for
producing these separated clouds is as follows.

We prepare the system starting with about 1 × 107 atoms of 6Li in the lowest hyperfine
state, at a total magnetic field of 300 G. A small fraction of atoms are transferred to the second-
lowest hyperfine state using a RF Landau–Zener sweep. The mixture is then evaporatively
cooled for a variable amount of time by lowering the depth of the optical dipole trap from
kB × 7 µK to a variable final depth between kB × 0.5 µK and kB × 1 µK, where kB is the
Boltzmann constant. The optical dipole trap depth is then raised to kB × 6 µK, where the
zero-temperature Fermi energy in the majority state is between kB × 0.8 µK and kB × 1.3 µK.

After the spin mixture is prepared at 300 G, the total magnetic field is reduced gradually
over 500 ms to 50 G, where the ratio of the magnetic moments of the two states is 2.5 and
interactions are very weak. A magnetic field gradient is applied along the z-direction for about
4 ms, imparting a linear momentum of the same sign but a different magnitude to each spin
state. The clouds are then allowed to evolve for about 30 ms, and they execute about half of an
oscillation period at different amplitudes and frequencies (the frequency ratio is 1.6 between
spin-up and spin-down). When the clouds have returned to the center of the trap, their centers
of mass are displaced from each other by about 200 µm (for comparison, the 1/e radius of the
majority cloud in the z-direction is between 200 and 300 µm at this point). A second gradient
pulse is applied along the same direction to remove the relative velocity of the two clouds. The
second pulse also removes most of the total center-of-mass motion. The total magnetic field is
then ramped to the Feshbach resonance at 834 G in about 5 ms. At resonance, the two spin states
have identical trapping frequencies of 22.8 Hz.2

To reach low temperatures, we apply a variable amount of evaporative cooling by lowering
the depth of the optical dipole trap after reaching 834 G. The time available for evaporative
cooling is limited to about 0.4 s by the relaxation time of the spin excitation. To reach high
temperatures, we prepare a hotter cloud at 300 G and heat the system further at 834 G by
releasing the atoms from the optical dipole trap and recapturing them. The depth of the optical
dipole trap is then ramped gradually to a final value in 80 ms. The final depth is chosen to
keep the number of atoms and the temperature approximately constant during the subsequent
evolution, and it corresponds to an effective radial trap frequency ranging from 80 Hz for the
low-temperature data to 250 Hz for the high-temperature data. After preparing the system at
the chosen temperature and with a nonzero spin-dipole moment, we are left with typically
N↑ ≈ 4 × 105 atoms in the majority state and N↓ ≈ 4 × 104 atoms in the minority state. We
then allow the system to evolve for a variable wait time t before measuring the densities of
the spin-up and spin-down clouds using resonant absorption imaging. Note that we limit the

2 The system as a whole oscillates harmonically along the z-direction at 22.8 Hz due to the residual center-of-mass
energy. This motion does not affect the dynamics in the total center-of-mass frame because the trapping potential is
harmonic in the z-direction, and therefore, according to Kohn’s theorem, the dynamics in the total center-of-mass
frame are equivalent to the dynamics of a system at rest [38].

New Journal of Physics 13 (2011) 055009 (http://www.njp.org/)
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(a)

(b)

(c) (d)

100 µm
eff

Figure 1. Measuring the spin-dipole mode of a highly polarized Fermi gas.
(a) and (b) show 2D column density images of the minority and majority spin
state, respectively, obtained using resonant absorption imaging in one run of the
experiment. The imaging pulses are each 4 µs in duration and separated by 6 µs.
The distance between the centers of mass in (a) and (b) is 34 µm. (c) Density
of the majority (solid red circles) and minority (open blue circles) versus the
effective potential energy Veff defined in the text, obtained from the images in
(a) and (b). The temperature of the cloud is found by fitting the non-interacting
Fermi gas equation of state (solid line) to the region of the majority density where
the minority fraction is 5% or less. (d) Displacement d of the minority center of
mass relative to the majority center of mass as a function of time t . This time
series includes the run displayed in (a–c). Error bars are from fitting uncertainty
(one std. dev.). The curve shows an exponential fit.

population of the majority cloud to ensure that the central optical density is less than 2, allowing
for accurate density measurements.

Figures 1(a) and (b) show typical 2D column densities of the two spin states after evapo-
rative cooling on resonance. From the column densities, we reconstruct the 3D densities nσ (ρ, z)
of each state σ = ↑,↓ using the inverse Abel transformation. The temperature of the system is
determined by fitting the majority density as a function of potential energy to the equation of
state of a non-interacting Fermi gas [37] (figure 1(c)): n↑,FG = −λ−3ζ3/2(−eβ(µ−V eff)), where
λ =

√
2π h̄2/mkBT is the thermal de Broglie wavelength, β = 1/kBT , the fit parameters are

the chemical potential µ and the temperature T , ζ3/2 is the polylogarithm of order 3/2, and
Veff = V (ρ, z − Z↑) is the effective potential energy. The fit is restricted to z < Z↑ and to the
outer edges of the majority cloud, where n↓/n↑ < xc. We used a cut-off minority fraction of
xc = 0.05 for all clouds with T < 0.5TF↑. For some of the data with 0.5 < T/TF↑ < 1, xc was
increased to 0.08 to increase the available signal, while for the data with T > 2TF↑, xc was
increased to 0.15 for the same reason. These increases in xc should not affect the accuracy of the
thermometry because the system interacts less strongly at high T/TF↑ [3]. This is demonstrated
by our spin susceptibility measurements for the balanced case in [14] that agree with the
compressibility above T/TF ≈ 1, showing the absence of spin correlations in this temperature
regime. For normalization, the central densities nσ (0) of each species are recorded and used
to define the central Fermi energies EFσ = h̄2k2

Fσ/2mσ , with kFσ = (6π 2nσ (0))1/3, m↑ = m, and
m↓ = m∗, and Fermi temperatures TFσ = EFσ/kB.

New Journal of Physics 13 (2011) 055009 (http://www.njp.org/)
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Spin transport is measured by observing the time evolution of the center-of-mass separation
d(t) = Z↓(t) − Z↑(t) (figure 1(d)), with Z↑(↓)(t) the center of mass of the majority (minority)
cloud along the z-axis at time t , determined from a 2D Gaussian fit to the column density. We
find that d relaxes exponentially to zero, corresponding to an overdamped spin-dipole mode,
and fit the evolution to an exponential function d(t) = d0e−t/τ . We report the dimensionless
relaxation time τ̃ = h̄ω2

zτ/EF↑. Equation (3) implies that τ̃ is mostly independent of the
absolute scales set by the density and the trapping frequency. Defining the average momentum
relaxation rate as

1

τ̂P
=

∫
d3r n↓(r)v↓(r)/τP(r)∫

d3r n↓(r)v↓(r)
, (4)

and making the approximation that τ̂P is constant in time relates τ̃ to fundamental properties of
the system as

τ̃ ≈
m∗/m

(1 + α)
·

1/τ̂P

h̄/EF↑

, (5)

in the limit (ωzτ)2
� 1 realized in our measurements, where τ is always at least 100 ms, and so

(ωzτ)2 > 200.
Figure 2 shows the measured values of the dimensionless relaxation time τ̃ as a function of

the reduced temperature T/TF↑. τ̃ increases at low temperatures before reaching a maximum
of 0.13(3)EF↑ for T/TF↑ = 0.40(6), and decreases at higher temperatures. We interpret the
behavior of the relaxation time at low temperatures as a consequence of Pauli blocking: as
the temperature is lowered significantly below the majority Fermi temperature, the phase space
available for a minority atom to scatter goes to zero. The reduction in τ̃ at high temperatures
is expected: at high temperatures, 1/τ̂P is essentially given by the collision rate in the gas [40],
1/τ̂P ∼ nσv. The scattering cross-section σ on resonance for T � TF↑ is given by the square
of the de Broglie wavelength and is thus proportional to 1/T , while the average speed v of the
particles is proportional to

√
T . Hence, τ̃ is expected to decrease like h̄nσv/EF↑ ∝

√
TF↑/T .

We observed behavior similar to figure 2 in 3D Fermi gases with resonant interactions and equal
spin populations in [14], although we see more significant Pauli blocking here than in [14] at
comparable temperatures.

The systematic uncertainties of the measured values have been estimated, and are
comparable to or less than the statistical errors. The temperature measurement uses knowledge
of the potential energy (2). The radial potential energy function Vρ(ρ) is assumed to have the
form

Vρ(ρ) =
2a P

πw2
0

(1 − e−2ρ2/w2
0) −

1

4
mω2

zρ
2, (6)

where a is a known constant expressing the polarizability of the atoms, P is the optical power
of the dipole trap and w0 is the waist of the trapping beam, and ωz = 2π × 22.8 Hz is the axial
trapping frequency. Direct measurements give P and w0 with 5–10% accuracy. To refine the
trap model, we sum the 3D densities of the majority atom clouds for each value of P used in the
experiment, taking only t > 190 ms, and use the known axial potential together with the local
density approximation to obtain Vρ(ρ). The model (6) is then fit to the experimentally measured
Vρ(ρ) with w0 as a free parameter, giving w0 = 115 µm. Equivalently, P could have been used
as the free parameter; the difference in the two approaches adds less than 1% uncertainty to the
potential energy. The uncertainty in the potential energy is dominated by noise in the images of

New Journal of Physics 13 (2011) 055009 (http://www.njp.org/)
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Figure 2. Normalized relaxation time of the spin-dipole mode of a highly
polarized Fermi gas as a function of the reduced temperature T/TF↑. TF↑ is the
local Fermi temperature at the center of the majority cloud. The solid curve is
the low-temperature limit from [18], given by equation (7). The dashed curve

is the expression 0.08
√

TF↑

T . The inset shows the average ratio of the minority
cloud size to the majority cloud size as a function of the reduced temperature
T/TF↑. The cloud sizes are defined as the 1/e radii along the z-axis, estimated
by fitting a 2D Gaussian function to the column densities of the two spin states.
In both figures, each point is a weighted average of the results from 1 to 3 time
series, with each time series containing on average 30 spin-up–spin-down image
pairs. The error bars give standard deviations due to statistical fluctuations within
a time series. Where the results of more than one time series are averaged, the
error bars show the standard deviation of the weighted mean, determined from
the standard deviations from each time series.

the clouds, giving an uncertainty in w0 of about 2 µm. This implies a 7% systematic error on
the potential energy at ρ = 40 µm (a typical value of ρ in the outer region of the cloud). The
resulting systematic uncertainty on the temperature is 10% at the lowest temperatures, and 5%
for temperatures near TF or higher. Measurements of density are affected by the laser linewidth,
imperfect polarization of the imaging light, and nonlinearities from saturation of the imaging
transition, Doppler shifting of atoms scattered by the imaging light and pumping into transparent
final states. The density measurement is calibrated using equilibrium low-temperature clouds
with large spin imbalance. The systematic uncertainty in the density is 10%. This leads to a
total systematic error in the reduced temperatures of 8–12%, and a systematic error in τ̃ of
6%. The magnification of the imaging system is calibrated to 0.5% and does not contribute
significantly to the uncertainties in w0 or d .

It would be interesting to have available a calculation of spin transport coefficients such
as 1/τP at arbitrary temperatures for comparison with our data. A full solution is available for
Fermi gases with equal populations in one spatial dimension [22, 23] and shows qualitative
features similar to our data, with a maximum of the spin drag coefficient (analogous to τ̃ ) at
finite temperatures of the order of TF.

We expect our data to differ quantitatively from predictions for a homogeneous system. The
measured quantity τ̃ is a global property of the trapped system, while the momentum relaxation
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rate 1/τP is a local quantity. For T � TF↑, 1/τP ∝ n↑, and 1/τP increases with increasing
majority density, while for T � TF↑, due to Pauli blocking 1/τP ∝ EF↑(T/TF↑)

2
∝ n−2/3

↑
, and

1/τP decreases with increasing majority density. Additionally, the variation in 1/τP should
cause the spin current to be non-uniform. The effect of inhomogeneity should be greater at
high reduced temperatures, where the minority cloud size approaches the majority cloud size.
The inset in figure 2 shows the ratio of the cloud sizes R↓/R↑ as a function of the reduced
temperature, where R↑(↓) is the 1/e width in the z-direction from a 2D Gaussian fit to the
majority (minority) column density. Indeed, R↓/R↑ increases with increasing T/TF↑. Even
at the lowest temperatures, R↓/R↑ remains significant, attaining a value of 0.7, due to the
finite minority fraction N↓/N↑ ≈ 0.1. The effect of inhomogeneity is therefore reduced at low
temperatures, but should remain present.

We compare our results for τ̃ at low temperatures to the low-temperature limit in [18],
which can be written as

1/τP(0)

EF↑/h̄
= c

α2

1 + α

(
m∗

m

)2 (
T

TF↑

)2

, (7)

for temperatures T � TF↑.3 The prefactor c changes slightly from c =
2π3

9 = 6.89 . . . to c ≈ 6.0
as the temperature rises from far below TF↓, where even the minority cloud is degenerate, to
temperatures where TF↓ � T � TF↑ and the minority is a classical gas [18]. In our coldest data,
T ≈ 0.5TF↓ and TF↓ ≈ 0.3TF↑, assuming m∗

= 1.2 m. To compare our data with [18], using (7),
we set c =

2π3

9 , α = 0.6 and m∗
= 1.2 m. The comparison is affected by the inhomogeneous

trapping potential in the experiment, as equation (7) gives the local value of 1/τP at the
center of the majority cloud. The experimental data agree with the value from equation (7)
at the lowest temperatures measured (see figure 2). The deviation at higher temperatures is
expected as the T � TF↑ limit becomes inapplicable. The convergence of the experimental
data to the theoretical value at low temperature despite the inhomogeneity of the system may
be partly due to the reduced minority cloud size at low temperatures, which reduces the
effects of inhomogeneity, as discussed above. Additionally, the variation in the momentum
relaxation rate with density will to some extent cancel at moderately low temperatures, as 1/τP

changes from increasing with increasing density at high reduced temperatures to decreasing
with increasing density due to Pauli blocking at low reduced temperatures. The crossing of the
experimental curve with the predictions for a uniform system at low temperatures therefore
does not necessarily indicate that the inhomogeneity is negligible at low temperatures in this
measurement.

At high temperatures T � TF↑,↓, the spin transport properties of a trapped system can be
calculated from the Boltzmann transport equation. For vanishing minority fraction, we find (now
with α = 0 and m∗

= m and assuming harmonic trapping in all three directions) [14]

τ̃ =
8

9π3/2 ε

√
TF↑

T
≈

0.16

ε

√
TF↑

T
, (8)

where ε = 1 when the minority drift velocity distribution v↓ is uniform. This result features the

expected dependence ∝

√
TF↑

T on temperature. The relative velocity between the two spin states

3 We omit a term due to the relative velocity of the spin up and spin-down clouds, which produces a correction of
less than 1% in the overdamped, finite-temperature regime accessed in this experiment.
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cannot be truly constant in space but has to be depressed in the center, where the density is
highest and the momentum relaxation is fastest. In general,

ε =

∫
d3rv↓(

Er
√

2
)e−βV∫

d3rv↓(Er)e−βV
, (9)

where V is the trapping potential (here assumed to be quadratic). For example, for a quadratic
drift velocity profile, v↓(Er) = ax2 + by2 + cz2, the predicted τ̃ is reduced by factor of ε = 2.
We find that the high-temperature result (8) with ε = 2 leads to close agreement with our
experimental results (figure 2). This model is interesting because it estimates the effects of
inhomogeneous density and velocity distributions, but it has shortcomings. The drift velocity
should remain non-zero everywhere, rather than going to zero at the origin as in the quadratic
case, and should have a radial component. A full quantitative description of the overdamped
spin-dipole motion in the high-temperature limit in an external trapping potential will therefore
be more complex.

3. A superfluid with small spin polarization

We extend the method of the previous section to study spin transport in Fermi gases with
resonant interactions and small spin imbalance. When the global polarization N↑−N↓

N↑+N↓

is less
than about 75% in a harmonically trapped Fermi gas at low temperature and with resonant
interactions, the system phase separates into a superfluid core surrounded by a polarized normal
state region [15, 16, 21]. The superfluid core is visible as a sharp reduction in the density
difference of the two spin states [16]. The transition between the superfluid and the imbalanced
normal regions forms a sharp interface below a tricritical point, where the density imbalance
jumps between the two regions [39]. Scattering and spin transport at the interface between a
normal and superfluid Fermi gas have been considered theoretically in [20, 41].

To observe spin transport in an imbalanced gas containing a superfluid, we prepare a
spin mixture with a global polarization of 17(3)%. The gas is cooled at 300 G and again
at 834 G after creating the spin-dipole excitation as described in the previous section. Two
off-resonant phase contrast images are taken to measure the densities of each spin state. An
imaging pulse tuned halfway between the resonance frequencies of the two states directly
measures the difference in the column densities (figure 3(a)), while a second pulse, red-detuned
from both states (figure 3(b)), provides additional information needed to reconstruct the total
column density in each state [39]. From the column densities of each state, we obtain 3D density
distributions using the inverse Abel transformation.

The 2D spin density (figure 3(a)) and 3D spin density (figure 3(c)) show a reduction near
the center of the trap, with the 3D density going to zero, characteristic of the superfluid
core in imbalanced Fermi gases [16]. We have checked that the shell structure remains
even after the spin density reaches equilibrium. Additionally, we estimate the temperature
T of the system to confirm that it is cold enough to contain a superfluid. In unpolarized
systems, the superfluid transition is predicted to occur at about Tc/TF = 0.173(6) [42], where
kBTF = EF = h̄2(6π 2n(0))2/3/2m and n is the density per spin state. This theoretical value
agrees well with a determination of Tc/TF by our group. Fitting the equation of state of a unitary
Fermi gas at zero imbalance [43] to the majority (minority) density gives an estimate T↑(↓) of the
temperature. The fits are restricted to Vσ,eff > 0.3 µK, where Vσ,eff = V (ρ, z − Zσ ), to exclude
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Figure 3. Spin-dipole mode of an imbalanced Fermi gas with a superfluid core.
Phase contrast images are taken with imaging light detuned (a) halfway between
the resonance frequencies of the two states and (b) at large red detuning from
both states. The image in (a) is proportional to the difference in column densities
of the two states. The depletion of the density difference in the center of the cloud
indicates the superfluid region. It is displaced from the center of the majority due
to the spin-dipole excitation. Panel (c) shows the difference in reconstructed 3D
densities of the spin up and spin-down clouds as a function of the z coordinate for
z > 0. The depletion in the center again indicates pairing and superfluidity [16].
An elliptical average over a narrow range of the radial coordinate ρ is used
to increase the signal-to-noise ratio. (d) The temperature is estimated from
the 3D densities of the two states as a function of the effective potential Veff

defined in the text. Solid red circles: majority density, open blue circles: minority
density. The curves are fits to the densities using the equation of state of a
unitary Fermi gas at zero imbalance to get upper and lower bounds on the
temperature.

the putative superfluid region. Compared to a balanced gas at unitarity with N ′

↑
= N ′

↓
= N↑, and

at the same temperature T, the majority cloud should have a larger size because the interaction
energy between the spin-up and spin-down atoms is attractive. We therefore expect that T↑

is an overestimate of T . Likewise, we expect T↓ < T , and we consider T↑ and T↓ to provide
approximate upper and lower bounds on T .

Figure 4(a) shows the temperature bounds during the approach to equilibrium. Time-
averaging gives 0.12(1) < T/TF < 0.15(2), where TF ≡ TF↑ ≈ TF↓. The error estimates include
the standard error of the mean and the systematic error from uncertainty in the potential energy
and in the density. These temperature bounds confirm that the system is in the vicinity of the
superfluid transition.

Even in the presence of the superfluid core, we still observe strong damping of the spin-
dipole mode. Figure 4(b) shows that the displacement d between the majority and minority
centers of mass along the z-axis relaxes gradually to zero, rather than oscillating as would be
expected in a dissipationless system. The 1/e relaxation time τ = 360 ms corresponds to a spin
drag coefficient [13, 22] of ω2

zτ = 0.06(1)EF↑/h̄, close to the maximum spin drag coefficient in
non-polarized trapped Fermi gases at unitarity [14].
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Figure 4. (a) Reduced temperature as a function of time during relaxation of
the spin-dipole excitation in a spin-polarized Fermi gas containing a superfluid
region. Red solid (blue open) circles: T↑(↓)/TF↑(↓) from a fit to the edge of the
majority (minority) spin state using the equation of state of an unpolarized
unitary Fermi gas, giving an upper (lower) limit to true temperature. (b) The
displacement of the spin-up and spin-down centers of mass relaxes exponentially,
indicating strong spin drag despite the presence of a superfluid. Error bars: one
std. dev. from fitting error.

The strong damping is reminiscent of the friction between the normal and superfluid
component in liquid helium [44] and in atomic Bose–Einstein condensates [46]. In the latter
case, out-of-phase oscillations between the condensate and the thermal component are strongly
damped. Even at low temperatures, currents in superfluids as well as in 1D superconducting
wires are still damped due to phase slips [46–48]. In the presented case of a partially polarized
Fermi gas, Andreev reflection of unpaired atoms at the normal-to-superfluid interface should
cause spin current decay even at the lowest temperatures [20, 41]. At higher temperatures or
if the majority chemical potential in the normal state region can overcome the pairing gap, the
microscopic velocity of majority atoms will significantly exceed the critical velocity of the
superfluid of about 0.3vF [49, 50], causing strong dissipation of spin currents. The relative
importance of dissipation at the interface versus dissipation inside the superfluid could be
determined by whether a spin current flows through the superfluid or around it. However, we
are not able to determine the spatial distribution of the spin current with our current data.

4. Conclusions

In this work, we presented our measurements on the damping of the spin-dipole mode in a highly
polarized Fermi gas with resonant interactions, over a wide range of temperatures. The damping
is seen to become weaker at temperatures significantly less than the majority Fermi energy, as
expected from Pauli blocking, i.e. the fact that quasi-particles in a Fermi liquid become long
lived at sufficiently low temperatures. These measurements provide the first quantitative test of
theoretical calculations of the spin transport properties of highly polarized Fermi gases. We also
observe spin transport in a Fermi gas with low spin polarization containing a superfluid region.
It is found that the spin-dipole motion remains strongly damped, revealing the importance of
friction between the superfluid and the normal component, possibly accompanied by reflection
processes at the interface.
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Abstract. We present measurements of spin transport in ultracold gases of
fermionic 6Li in a mixture of two spin states at a Feshbach resonance. In
particular, we study the spin-dipole mode, where the two spin components
are displaced from each other against a harmonic restoring force. We prepare
a highly imbalanced, or polaronic, spin mixture with a spin-dipole excitation
and we observe strong, unitarity-limited damping of the spin-dipole mode. In
gases with small spin imbalance, below the Pauli limit for superfluidity, we
observe strongly damped spin flow even in the presence of a superfluid core.
This indicates strong mutual friction between superfluid and polarized normal
spins, possibly involving Andreev reflection at the superfluid–normal interface.
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1. Introduction

The quality of transport is one of the most important properties distinguishing states of
matter. Of great technical importance, electrons in condensed matter materials can flow
as currents or supercurrents, or be localized in an insulator, or even switch their state of
conductivity through controllable parameters like an applied magnetic field. It is the task
of many-body physics to develop models that may explain the observed transport properties
in a system. Dilute atomic gases cooled to quantum degeneracy provide ideal systems for
testing many-body theories. In particular, Feshbach resonances [1] in atomic Fermi gases
allow experimental control over the strength of two-body interactions, giving access to the
Bose–Einstein condensation to Bardeen–Cooper–Schrieffer superfluid (BEC–BCS) crossover
regime [2, 3]. Transport properties have played an important role in characterizing strongly
interacting Fermi gases in the BEC-BCS crossover, with the observation of hydrodynamic flow
indicating nearly perfect fluidity [4, 5], the measurement of collective excitation frequencies
probing the equation of state [6–8], and the observation of vortex lattices in rotating gases
demonstrating superfluidity [9]. The first observations of spin transport in Fermi gases were
obtained in the weakly interacting regime, and showed the onset of Pauli blocking of
collisions [10], and the transition from collisionless to hydrodynamic behavior [11]. Spin
excitations have also been observed in Fermi gases as long-lived spin waves near zero scattering
length [12].

Here we study spin transport in strongly interacting two-component Fermi gases. Spin
currents are strongly damped in such systems due to the high collision rate between opposite
spin atoms: as two-body scattering does not conserve relative momentum, each scattering
event on average reduces the net spin current [13]. At the Feshbach resonance, scattering is
maximal, with a mean-free path between collisions of opposite spins that can be as short as one
interparticle spacing—the smallest possible in a three-dimensional (3D) gas. Measurements
of spin transport in strongly interacting Fermi gases with an equal number of atoms in two
spin states were recently reported [14]. Interactions were shown to be strong enough to reverse
spin currents, with two clouds of opposite spin almost perfectly repelling each other. The spin
diffusivity was found to reach a lower limit of the order of h̄/m at unitarity, the quantum limit
of diffusion. Here, we consider the case where the number of atoms in the two states is unequal,
and study spin transport in the polaron and phase-separated superfluid regimes. In highly
polarized systems that remain non-superfluid down to zero temperature [15–17], spin currents
are expected to become undamped due to Pauli blocking [18–20]. In this imbalanced regime,
a high-frequency mode observed after a compressional excitation was interpreted as a weakly
damped spin quadrupole (or breathing) mode [21]. The question of the damping properties of
the spin excitation and its temperature dependence was left open. Spin transport properties of
ultracold Fermi gases have been investigated theoretically most recently in [18–20], [22–24],
allowing comparison between theory and experiment.

In section 2, we present measurements of the damping rate of spin excitations in highly
polarized Fermi gases as a function of temperature. We show that damping is maximal at
finite temperatures. In section 3, we study smaller spin polarizations, below the Pauli limit
of superfluidity [15], just enough to reveal the presence of a superfluid core in the system.
We show that the spin-dipole mode is strongly damped in the presence of the superfluid. In a
partially polarized Fermi gas, damping of spin motion is expected to persist at low temperatures
due to Andreev reflection [20].
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2. Highly imbalanced Fermi gases

Fermi gases with resonant interactions can remain normal down to zero temperature if the spin
imbalance exceeds the Pauli (or the Clogston–Chandrasekhar) limit [15, 16, 21, 25, 26, 39].
We refer to the spin state with the larger population of atoms as the majority, or spin-up
state, and the state with fewer atoms as the minority, or spin-down state. Radio-frequency (RF)
spectroscopy [17] on such systems confirms the quasi-particle picture [27–29] where minority
atoms are dressed by the majority Fermi sea, forming a quasi-particle known as the Fermi
polaron. The energy of a single polaron in a zero-temperature Fermi sea of spin-up atoms has
been described using the effective Hamiltonian [18, 19, 30],

H = −αµ↑ +
p2

2m∗
, (1)

where p is the momentum of the polaron, m∗ is the polaron effective mass, µ↑ is the local
spin-up chemical potential and α characterizes the polaron binding energy. The parameters α

and m∗/m, where m is the bare mass of spin-up and spin-down fermions, have been measured
experimentally [17, 21, 31, 32] and calculated theoretically [30], [33–35], giving α = 0.62 and
m∗/m ≈ 1.2 at zero temperature.

We consider a mixture of N↑ spin-up fermions and N↓ spin-down fermions at temperature
T with equal masses and resonant interactions, held in a spin-independent potential of the
form

V (ρ, z) =
1
2mω2

z z2 + Vρ(ρ), (2)

where ρ2
= x2 + y2. The spin-up (down) clouds have density n↑(↓)(r) at position r. The minority

cloud is initially displaced by a small amount Z↓(0) along the z-axis and is allowed to relax to
its equilibrium position.

In the limit N↓ � N↑, the motion of the spin-up cloud due to momentum absorbed from
the spin-down cloud may be neglected. The equation of motion of the spin-down center of mass
Z↓ is then [18]

m∗ Z̈↓ + (1 + α)mω2
z Z↓ +

m∗

N↓

∫
d3r n↓(r)

v↓(r)
τP(r)

= 0, (3)

where the factor of (1 + α) is due to the attraction of the minority fermions to the majority
cloud, 1/τP is the local momentum relaxation rate due to collisions [18] and is equivalent
to the spin drag coefficient [13, 22], and v↓ is the local drift velocity of spin-down atoms.
By dimensional analysis, h̄/τP(r) must be given by the local majority Fermi energy times a
universal dimensionless function of the local reduced temperature T/T local

F↑
(r) and the local ratio

T local
F↓

(r)/T local
F↑

(r) of the Fermi temperatures, where T local
F↑(↓)(r) is the local majority (minority)

Fermi temperature. The first two terms in (3) follow from (1), (2) and the local density
approximation, while the third term is due to damping and is not captured in (1). Equation (3)
neglects a possible back-action of the minority on the majority atoms that might deform the
majority density profile.

In our experimental realization of this transport problem, we use a gas of ultracold
fermionic 6Li atoms. The 6Li atoms are cooled sympathetically with 23Na [36] and loaded into a
hybrid optical and magnetic trap with an adjustable bias magnetic field [37]. The magnetic field
curvature provides essentially perfect harmonic confinement along the axial (z) direction, while
the optical dipole trap (laser wavelength 1064 nm, waist 115 µm) provides trapping in the radial
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directions, with negligible contribution to the axial confinement. With this system, we perform
a collection of time series measurements. In each time series, we prepare the system in a chosen
initial state and observe its evolution.

At the Feshbach resonance at 834 G, the magnetic moments of ‘spin-up’ and ‘spin-down’
atoms, the two lowest hyperfine states of 6Li, are equal to 1 part in 1000, since their electron
spin is in fact aligned with the magnetic field. Inducing a spin current is therefore extremely
challenging on resonance. However, at lower fields, their magnetic moments differ, allowing
separation of the two gas clouds by a magnetic field gradient. Our experimental procedure for
producing these separated clouds is as follows.

We prepare the system starting with about 1 × 107 atoms of 6Li in the lowest hyperfine
state, at a total magnetic field of 300 G. A small fraction of atoms are transferred to the second-
lowest hyperfine state using a RF Landau–Zener sweep. The mixture is then evaporatively
cooled for a variable amount of time by lowering the depth of the optical dipole trap from
kB × 7 µK to a variable final depth between kB × 0.5 µK and kB × 1 µK, where kB is the
Boltzmann constant. The optical dipole trap depth is then raised to kB × 6 µK, where the
zero-temperature Fermi energy in the majority state is between kB × 0.8 µK and kB × 1.3 µK.

After the spin mixture is prepared at 300 G, the total magnetic field is reduced gradually
over 500 ms to 50 G, where the ratio of the magnetic moments of the two states is 2.5 and
interactions are very weak. A magnetic field gradient is applied along the z-direction for about
4 ms, imparting a linear momentum of the same sign but a different magnitude to each spin
state. The clouds are then allowed to evolve for about 30 ms, and they execute about half of an
oscillation period at different amplitudes and frequencies (the frequency ratio is 1.6 between
spin-up and spin-down). When the clouds have returned to the center of the trap, their centers
of mass are displaced from each other by about 200 µm (for comparison, the 1/e radius of the
majority cloud in the z-direction is between 200 and 300 µm at this point). A second gradient
pulse is applied along the same direction to remove the relative velocity of the two clouds. The
second pulse also removes most of the total center-of-mass motion. The total magnetic field is
then ramped to the Feshbach resonance at 834 G in about 5 ms. At resonance, the two spin states
have identical trapping frequencies of 22.8 Hz.2

To reach low temperatures, we apply a variable amount of evaporative cooling by lowering
the depth of the optical dipole trap after reaching 834 G. The time available for evaporative
cooling is limited to about 0.4 s by the relaxation time of the spin excitation. To reach high
temperatures, we prepare a hotter cloud at 300 G and heat the system further at 834 G by
releasing the atoms from the optical dipole trap and recapturing them. The depth of the optical
dipole trap is then ramped gradually to a final value in 80 ms. The final depth is chosen to
keep the number of atoms and the temperature approximately constant during the subsequent
evolution, and it corresponds to an effective radial trap frequency ranging from 80 Hz for the
low-temperature data to 250 Hz for the high-temperature data. After preparing the system at
the chosen temperature and with a nonzero spin-dipole moment, we are left with typically
N↑ ≈ 4 × 105 atoms in the majority state and N↓ ≈ 4 × 104 atoms in the minority state. We
then allow the system to evolve for a variable wait time t before measuring the densities of
the spin-up and spin-down clouds using resonant absorption imaging. Note that we limit the

2 The system as a whole oscillates harmonically along the z-direction at 22.8 Hz due to the residual center-of-mass
energy. This motion does not affect the dynamics in the total center-of-mass frame because the trapping potential is
harmonic in the z-direction, and therefore, according to Kohn’s theorem, the dynamics in the total center-of-mass
frame are equivalent to the dynamics of a system at rest [38].
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(a)

(b)

(c) (d)

100 µm
eff

Figure 1. Measuring the spin-dipole mode of a highly polarized Fermi gas.
(a) and (b) show 2D column density images of the minority and majority spin
state, respectively, obtained using resonant absorption imaging in one run of the
experiment. The imaging pulses are each 4 µs in duration and separated by 6 µs.
The distance between the centers of mass in (a) and (b) is 34 µm. (c) Density
of the majority (solid red circles) and minority (open blue circles) versus the
effective potential energy Veff defined in the text, obtained from the images in
(a) and (b). The temperature of the cloud is found by fitting the non-interacting
Fermi gas equation of state (solid line) to the region of the majority density where
the minority fraction is 5% or less. (d) Displacement d of the minority center of
mass relative to the majority center of mass as a function of time t . This time
series includes the run displayed in (a–c). Error bars are from fitting uncertainty
(one std. dev.). The curve shows an exponential fit.

population of the majority cloud to ensure that the central optical density is less than 2, allowing
for accurate density measurements.

Figures 1(a) and (b) show typical 2D column densities of the two spin states after evapo-
rative cooling on resonance. From the column densities, we reconstruct the 3D densities nσ (ρ, z)
of each state σ = ↑,↓ using the inverse Abel transformation. The temperature of the system is
determined by fitting the majority density as a function of potential energy to the equation of
state of a non-interacting Fermi gas [37] (figure 1(c)): n↑,FG = −λ−3ζ3/2(−eβ(µ−V eff)), where
λ =

√
2π h̄2/mkBT is the thermal de Broglie wavelength, β = 1/kBT , the fit parameters are

the chemical potential µ and the temperature T , ζ3/2 is the polylogarithm of order 3/2, and
Veff = V (ρ, z − Z↑) is the effective potential energy. The fit is restricted to z < Z↑ and to the
outer edges of the majority cloud, where n↓/n↑ < xc. We used a cut-off minority fraction of
xc = 0.05 for all clouds with T < 0.5TF↑. For some of the data with 0.5 < T/TF↑ < 1, xc was
increased to 0.08 to increase the available signal, while for the data with T > 2TF↑, xc was
increased to 0.15 for the same reason. These increases in xc should not affect the accuracy of the
thermometry because the system interacts less strongly at high T/TF↑ [3]. This is demonstrated
by our spin susceptibility measurements for the balanced case in [14] that agree with the
compressibility above T/TF ≈ 1, showing the absence of spin correlations in this temperature
regime. For normalization, the central densities nσ (0) of each species are recorded and used
to define the central Fermi energies EFσ = h̄2k2

Fσ/2mσ , with kFσ = (6π 2nσ (0))1/3, m↑ = m, and
m↓ = m∗, and Fermi temperatures TFσ = EFσ/kB.
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Spin transport is measured by observing the time evolution of the center-of-mass separation
d(t) = Z↓(t) − Z↑(t) (figure 1(d)), with Z↑(↓)(t) the center of mass of the majority (minority)
cloud along the z-axis at time t , determined from a 2D Gaussian fit to the column density. We
find that d relaxes exponentially to zero, corresponding to an overdamped spin-dipole mode,
and fit the evolution to an exponential function d(t) = d0e−t/τ . We report the dimensionless
relaxation time τ̃ = h̄ω2

zτ/EF↑. Equation (3) implies that τ̃ is mostly independent of the
absolute scales set by the density and the trapping frequency. Defining the average momentum
relaxation rate as

1

τ̂P
=

∫
d3r n↓(r)v↓(r)/τP(r)∫

d3r n↓(r)v↓(r)
, (4)

and making the approximation that τ̂P is constant in time relates τ̃ to fundamental properties of
the system as

τ̃ ≈
m∗/m

(1 + α)
·

1/τ̂P

h̄/EF↑

, (5)

in the limit (ωzτ)2
� 1 realized in our measurements, where τ is always at least 100 ms, and so

(ωzτ)2 > 200.
Figure 2 shows the measured values of the dimensionless relaxation time τ̃ as a function of

the reduced temperature T/TF↑. τ̃ increases at low temperatures before reaching a maximum
of 0.13(3)EF↑ for T/TF↑ = 0.40(6), and decreases at higher temperatures. We interpret the
behavior of the relaxation time at low temperatures as a consequence of Pauli blocking: as
the temperature is lowered significantly below the majority Fermi temperature, the phase space
available for a minority atom to scatter goes to zero. The reduction in τ̃ at high temperatures
is expected: at high temperatures, 1/τ̂P is essentially given by the collision rate in the gas [40],
1/τ̂P ∼ nσv. The scattering cross-section σ on resonance for T � TF↑ is given by the square
of the de Broglie wavelength and is thus proportional to 1/T , while the average speed v of the
particles is proportional to

√
T . Hence, τ̃ is expected to decrease like h̄nσv/EF↑ ∝

√
TF↑/T .

We observed behavior similar to figure 2 in 3D Fermi gases with resonant interactions and equal
spin populations in [14], although we see more significant Pauli blocking here than in [14] at
comparable temperatures.

The systematic uncertainties of the measured values have been estimated, and are
comparable to or less than the statistical errors. The temperature measurement uses knowledge
of the potential energy (2). The radial potential energy function Vρ(ρ) is assumed to have the
form

Vρ(ρ) =
2a P

πw2
0

(1 − e−2ρ2/w2
0) −

1

4
mω2

zρ
2, (6)

where a is a known constant expressing the polarizability of the atoms, P is the optical power
of the dipole trap and w0 is the waist of the trapping beam, and ωz = 2π × 22.8 Hz is the axial
trapping frequency. Direct measurements give P and w0 with 5–10% accuracy. To refine the
trap model, we sum the 3D densities of the majority atom clouds for each value of P used in the
experiment, taking only t > 190 ms, and use the known axial potential together with the local
density approximation to obtain Vρ(ρ). The model (6) is then fit to the experimentally measured
Vρ(ρ) with w0 as a free parameter, giving w0 = 115 µm. Equivalently, P could have been used
as the free parameter; the difference in the two approaches adds less than 1% uncertainty to the
potential energy. The uncertainty in the potential energy is dominated by noise in the images of
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Figure 2. Normalized relaxation time of the spin-dipole mode of a highly
polarized Fermi gas as a function of the reduced temperature T/TF↑. TF↑ is the
local Fermi temperature at the center of the majority cloud. The solid curve is
the low-temperature limit from [18], given by equation (7). The dashed curve

is the expression 0.08
√

TF↑

T . The inset shows the average ratio of the minority
cloud size to the majority cloud size as a function of the reduced temperature
T/TF↑. The cloud sizes are defined as the 1/e radii along the z-axis, estimated
by fitting a 2D Gaussian function to the column densities of the two spin states.
In both figures, each point is a weighted average of the results from 1 to 3 time
series, with each time series containing on average 30 spin-up–spin-down image
pairs. The error bars give standard deviations due to statistical fluctuations within
a time series. Where the results of more than one time series are averaged, the
error bars show the standard deviation of the weighted mean, determined from
the standard deviations from each time series.

the clouds, giving an uncertainty in w0 of about 2 µm. This implies a 7% systematic error on
the potential energy at ρ = 40 µm (a typical value of ρ in the outer region of the cloud). The
resulting systematic uncertainty on the temperature is 10% at the lowest temperatures, and 5%
for temperatures near TF or higher. Measurements of density are affected by the laser linewidth,
imperfect polarization of the imaging light, and nonlinearities from saturation of the imaging
transition, Doppler shifting of atoms scattered by the imaging light and pumping into transparent
final states. The density measurement is calibrated using equilibrium low-temperature clouds
with large spin imbalance. The systematic uncertainty in the density is 10%. This leads to a
total systematic error in the reduced temperatures of 8–12%, and a systematic error in τ̃ of
6%. The magnification of the imaging system is calibrated to 0.5% and does not contribute
significantly to the uncertainties in w0 or d .

It would be interesting to have available a calculation of spin transport coefficients such
as 1/τP at arbitrary temperatures for comparison with our data. A full solution is available for
Fermi gases with equal populations in one spatial dimension [22, 23] and shows qualitative
features similar to our data, with a maximum of the spin drag coefficient (analogous to τ̃ ) at
finite temperatures of the order of TF.

We expect our data to differ quantitatively from predictions for a homogeneous system. The
measured quantity τ̃ is a global property of the trapped system, while the momentum relaxation
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rate 1/τP is a local quantity. For T � TF↑, 1/τP ∝ n↑, and 1/τP increases with increasing
majority density, while for T � TF↑, due to Pauli blocking 1/τP ∝ EF↑(T/TF↑)

2
∝ n−2/3

↑
, and

1/τP decreases with increasing majority density. Additionally, the variation in 1/τP should
cause the spin current to be non-uniform. The effect of inhomogeneity should be greater at
high reduced temperatures, where the minority cloud size approaches the majority cloud size.
The inset in figure 2 shows the ratio of the cloud sizes R↓/R↑ as a function of the reduced
temperature, where R↑(↓) is the 1/e width in the z-direction from a 2D Gaussian fit to the
majority (minority) column density. Indeed, R↓/R↑ increases with increasing T/TF↑. Even
at the lowest temperatures, R↓/R↑ remains significant, attaining a value of 0.7, due to the
finite minority fraction N↓/N↑ ≈ 0.1. The effect of inhomogeneity is therefore reduced at low
temperatures, but should remain present.

We compare our results for τ̃ at low temperatures to the low-temperature limit in [18],
which can be written as

1/τP(0)

EF↑/h̄
= c

α2

1 + α

(
m∗

m

)2 (
T

TF↑

)2

, (7)

for temperatures T � TF↑.3 The prefactor c changes slightly from c =
2π3

9 = 6.89 . . . to c ≈ 6.0
as the temperature rises from far below TF↓, where even the minority cloud is degenerate, to
temperatures where TF↓ � T � TF↑ and the minority is a classical gas [18]. In our coldest data,
T ≈ 0.5TF↓ and TF↓ ≈ 0.3TF↑, assuming m∗

= 1.2 m. To compare our data with [18], using (7),
we set c =

2π3

9 , α = 0.6 and m∗
= 1.2 m. The comparison is affected by the inhomogeneous

trapping potential in the experiment, as equation (7) gives the local value of 1/τP at the
center of the majority cloud. The experimental data agree with the value from equation (7)
at the lowest temperatures measured (see figure 2). The deviation at higher temperatures is
expected as the T � TF↑ limit becomes inapplicable. The convergence of the experimental
data to the theoretical value at low temperature despite the inhomogeneity of the system may
be partly due to the reduced minority cloud size at low temperatures, which reduces the
effects of inhomogeneity, as discussed above. Additionally, the variation in the momentum
relaxation rate with density will to some extent cancel at moderately low temperatures, as 1/τP

changes from increasing with increasing density at high reduced temperatures to decreasing
with increasing density due to Pauli blocking at low reduced temperatures. The crossing of the
experimental curve with the predictions for a uniform system at low temperatures therefore
does not necessarily indicate that the inhomogeneity is negligible at low temperatures in this
measurement.

At high temperatures T � TF↑,↓, the spin transport properties of a trapped system can be
calculated from the Boltzmann transport equation. For vanishing minority fraction, we find (now
with α = 0 and m∗

= m and assuming harmonic trapping in all three directions) [14]

τ̃ =
8

9π3/2 ε

√
TF↑

T
≈

0.16

ε

√
TF↑

T
, (8)

where ε = 1 when the minority drift velocity distribution v↓ is uniform. This result features the

expected dependence ∝

√
TF↑

T on temperature. The relative velocity between the two spin states

3 We omit a term due to the relative velocity of the spin up and spin-down clouds, which produces a correction of
less than 1% in the overdamped, finite-temperature regime accessed in this experiment.
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cannot be truly constant in space but has to be depressed in the center, where the density is
highest and the momentum relaxation is fastest. In general,

ε =

∫
d3rv↓(

Er
√

2
)e−βV∫

d3rv↓(Er)e−βV
, (9)

where V is the trapping potential (here assumed to be quadratic). For example, for a quadratic
drift velocity profile, v↓(Er) = ax2 + by2 + cz2, the predicted τ̃ is reduced by factor of ε = 2.
We find that the high-temperature result (8) with ε = 2 leads to close agreement with our
experimental results (figure 2). This model is interesting because it estimates the effects of
inhomogeneous density and velocity distributions, but it has shortcomings. The drift velocity
should remain non-zero everywhere, rather than going to zero at the origin as in the quadratic
case, and should have a radial component. A full quantitative description of the overdamped
spin-dipole motion in the high-temperature limit in an external trapping potential will therefore
be more complex.

3. A superfluid with small spin polarization

We extend the method of the previous section to study spin transport in Fermi gases with
resonant interactions and small spin imbalance. When the global polarization N↑−N↓

N↑+N↓

is less
than about 75% in a harmonically trapped Fermi gas at low temperature and with resonant
interactions, the system phase separates into a superfluid core surrounded by a polarized normal
state region [15, 16, 21]. The superfluid core is visible as a sharp reduction in the density
difference of the two spin states [16]. The transition between the superfluid and the imbalanced
normal regions forms a sharp interface below a tricritical point, where the density imbalance
jumps between the two regions [39]. Scattering and spin transport at the interface between a
normal and superfluid Fermi gas have been considered theoretically in [20, 41].

To observe spin transport in an imbalanced gas containing a superfluid, we prepare a
spin mixture with a global polarization of 17(3)%. The gas is cooled at 300 G and again
at 834 G after creating the spin-dipole excitation as described in the previous section. Two
off-resonant phase contrast images are taken to measure the densities of each spin state. An
imaging pulse tuned halfway between the resonance frequencies of the two states directly
measures the difference in the column densities (figure 3(a)), while a second pulse, red-detuned
from both states (figure 3(b)), provides additional information needed to reconstruct the total
column density in each state [39]. From the column densities of each state, we obtain 3D density
distributions using the inverse Abel transformation.

The 2D spin density (figure 3(a)) and 3D spin density (figure 3(c)) show a reduction near
the center of the trap, with the 3D density going to zero, characteristic of the superfluid
core in imbalanced Fermi gases [16]. We have checked that the shell structure remains
even after the spin density reaches equilibrium. Additionally, we estimate the temperature
T of the system to confirm that it is cold enough to contain a superfluid. In unpolarized
systems, the superfluid transition is predicted to occur at about Tc/TF = 0.173(6) [42], where
kBTF = EF = h̄2(6π 2n(0))2/3/2m and n is the density per spin state. This theoretical value
agrees well with a determination of Tc/TF by our group. Fitting the equation of state of a unitary
Fermi gas at zero imbalance [43] to the majority (minority) density gives an estimate T↑(↓) of the
temperature. The fits are restricted to Vσ,eff > 0.3 µK, where Vσ,eff = V (ρ, z − Zσ ), to exclude
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Figure 3. Spin-dipole mode of an imbalanced Fermi gas with a superfluid core.
Phase contrast images are taken with imaging light detuned (a) halfway between
the resonance frequencies of the two states and (b) at large red detuning from
both states. The image in (a) is proportional to the difference in column densities
of the two states. The depletion of the density difference in the center of the cloud
indicates the superfluid region. It is displaced from the center of the majority due
to the spin-dipole excitation. Panel (c) shows the difference in reconstructed 3D
densities of the spin up and spin-down clouds as a function of the z coordinate for
z > 0. The depletion in the center again indicates pairing and superfluidity [16].
An elliptical average over a narrow range of the radial coordinate ρ is used
to increase the signal-to-noise ratio. (d) The temperature is estimated from
the 3D densities of the two states as a function of the effective potential Veff

defined in the text. Solid red circles: majority density, open blue circles: minority
density. The curves are fits to the densities using the equation of state of a
unitary Fermi gas at zero imbalance to get upper and lower bounds on the
temperature.

the putative superfluid region. Compared to a balanced gas at unitarity with N ′

↑
= N ′

↓
= N↑, and

at the same temperature T, the majority cloud should have a larger size because the interaction
energy between the spin-up and spin-down atoms is attractive. We therefore expect that T↑

is an overestimate of T . Likewise, we expect T↓ < T , and we consider T↑ and T↓ to provide
approximate upper and lower bounds on T .

Figure 4(a) shows the temperature bounds during the approach to equilibrium. Time-
averaging gives 0.12(1) < T/TF < 0.15(2), where TF ≡ TF↑ ≈ TF↓. The error estimates include
the standard error of the mean and the systematic error from uncertainty in the potential energy
and in the density. These temperature bounds confirm that the system is in the vicinity of the
superfluid transition.

Even in the presence of the superfluid core, we still observe strong damping of the spin-
dipole mode. Figure 4(b) shows that the displacement d between the majority and minority
centers of mass along the z-axis relaxes gradually to zero, rather than oscillating as would be
expected in a dissipationless system. The 1/e relaxation time τ = 360 ms corresponds to a spin
drag coefficient [13, 22] of ω2

zτ = 0.06(1)EF↑/h̄, close to the maximum spin drag coefficient in
non-polarized trapped Fermi gases at unitarity [14].
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Figure 4. (a) Reduced temperature as a function of time during relaxation of
the spin-dipole excitation in a spin-polarized Fermi gas containing a superfluid
region. Red solid (blue open) circles: T↑(↓)/TF↑(↓) from a fit to the edge of the
majority (minority) spin state using the equation of state of an unpolarized
unitary Fermi gas, giving an upper (lower) limit to true temperature. (b) The
displacement of the spin-up and spin-down centers of mass relaxes exponentially,
indicating strong spin drag despite the presence of a superfluid. Error bars: one
std. dev. from fitting error.

The strong damping is reminiscent of the friction between the normal and superfluid
component in liquid helium [44] and in atomic Bose–Einstein condensates [46]. In the latter
case, out-of-phase oscillations between the condensate and the thermal component are strongly
damped. Even at low temperatures, currents in superfluids as well as in 1D superconducting
wires are still damped due to phase slips [46–48]. In the presented case of a partially polarized
Fermi gas, Andreev reflection of unpaired atoms at the normal-to-superfluid interface should
cause spin current decay even at the lowest temperatures [20, 41]. At higher temperatures or
if the majority chemical potential in the normal state region can overcome the pairing gap, the
microscopic velocity of majority atoms will significantly exceed the critical velocity of the
superfluid of about 0.3vF [49, 50], causing strong dissipation of spin currents. The relative
importance of dissipation at the interface versus dissipation inside the superfluid could be
determined by whether a spin current flows through the superfluid or around it. However, we
are not able to determine the spatial distribution of the spin current with our current data.

4. Conclusions

In this work, we presented our measurements on the damping of the spin-dipole mode in a highly
polarized Fermi gas with resonant interactions, over a wide range of temperatures. The damping
is seen to become weaker at temperatures significantly less than the majority Fermi energy, as
expected from Pauli blocking, i.e. the fact that quasi-particles in a Fermi liquid become long
lived at sufficiently low temperatures. These measurements provide the first quantitative test of
theoretical calculations of the spin transport properties of highly polarized Fermi gases. We also
observe spin transport in a Fermi gas with low spin polarization containing a superfluid region.
It is found that the spin-dipole motion remains strongly damped, revealing the importance of
friction between the superfluid and the normal component, possibly accompanied by reflection
processes at the interface.
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Universal spin transport in a strongly interacting
Fermi gas
Ariel Sommer1,2,3, Mark Ku1,2,3, Giacomo Roati4,5 & Martin W. Zwierlein1,2,3

Transport of fermions, particles with half-integer spin, is central to
many fields of physics. Electron transport runs modern techno-
logy, defining states of matter such as superconductors and insu-
lators, and electron spin is being explored as a new carrier of
information1. Neutrino transport energizes supernova explosions
following the collapse of a dying star2, and hydrodynamic trans-
port of the quark–gluon plasma governed the expansion of the
early Universe3. However, our understanding of non-equilibrium
dynamics in such strongly interacting fermionic matter is still
limited. Ultracold gases of fermionic atoms realize a pristine model
for such systems and can be studied in real time with the precision
of atomic physics4. Even above the superfluid transition, such gases
flow as an almost perfect fluid with very low viscosity when inter-
actions are tuned to a scattering resonance3,5–8. In this hydro-
dynamic regime, collective density excitations are weakly damped6,7.
Here we experimentally investigate spin excitations in a Fermi gas of
6Li atoms, finding that, in contrast, they are maximally damped. A
spin current is induced by spatially separating two spin components
and observing their evolution in an external trapping potential. We
demonstrate that interactions can be strong enough to reverse spin
currents, with components of opposite spin reflecting off each
other. Near equilibrium, we obtain the spin drag coefficient, the
spin diffusivity and the spin susceptibility as a function of temper-
ature on resonance and show that they obey universal laws at high
temperatures. In the degenerate regime, the spin diffusivity
approaches a value set byB/m, the quantum limit of diffusion, where
B is Planck’s constant divided by 2p and m the atomic mass. For
repulsive interactions, our measurements seem to exclude a meta-
stable ferromagnetic state9–11.

Understanding the transport of spin, as opposed to the transport of
charge, is highly relevant to the novel field of spintronics1. Whereas
charge currents are unaffected by electron–electron scattering owing
to momentum conservation, spin currents are intrinsically damped
owing to collisions between electrons of opposite spin, as their relative
momentum is not conserved. This phenomenon is known as spin
drag12,13. It is expected to contribute significantly to the damping of
spin currents in doped semiconductors14. The random collision events
also lead to spin diffusion—the tendency for spin currents to flow in
such a way as to even out spatial gradients in the spin density—which
has been studied in high-temperature superconductors15 and in liquid
3He–4He mixtures16,17.

Creating spin currents poses a major challenge in electronic sys-
tems, where mobile spins are scattered by their environment and by
each other. However, in ultracold atomic gases, we have the freedom to
first prepare an essentially non-interacting spin mixture, separate
atoms spatially by using magnetic field gradients, and only then induce
strong interactions. Past observations of spin currents in ultracold
Fermi gases18,19 were made in the weakly interacting regime. Here
we access the regime near a Feshbach resonance4, where interactions
are as strong as allowed by quantum mechanics (the unitarity limit).

We measure spin transport properties, namely the spin drag coef-
ficient Csd and the spin diffusivity Ds, of a strongly interacting Fermi
gas composed of an equal number of atoms in two different spin states.
In the strongly interacting regime, spin drag is expected to reach a
universal maximum value, and spin diffusion is expected to reach a
universal minimum.

The universal behaviour of the spin transport coefficients of a Fermi
gas can be estimated on general grounds. At the Feshbach resonance,
the scattering cross-section s between atoms of opposite spin is given
by the square of the de Broglie wavelength. In the degenerate regime
(that is, below the Fermi temperature TF) s<1

�
k2

F, where
kF 5 (6p2n)1/3 is the Fermi wavevector and n is the density of atoms
in each spin state. The mean free path between collisions is thus
l 5 1/(ns) < 1/kF, or about one interparticle spacing, which is the
smallest possible mean free path in a gas. The average speed v of atoms
is of the order of the Fermi velocity, BkF/m. In estimating the spin
diffusivity Ds < vl, the density-dependent factors cancel, giving
Ds < B/m. This value for Ds represents a universal quantum limit to
spin diffusivity in Fermi gases. Away from resonance, the scattering
cross-section decreases, increasing Ds. For temperatures T much
greater than TF, the scattering cross-section will be given by the square
of the thermal de Broglie wavelength, and thus decreases as s / 1/T.
The velocity, in turn, will increase as v!

ffiffiffiffi
T
p

, causing Ds to increase as
Ds / T 3/2. An analogous scaling argument applies to the viscosity7,8.
Finally, in a degenerate Fermi gas, the average velocity will remain of
the order of the Fermi velocity, but the effective scattering cross-
section will scale as s / T 2 owing to Pauli blocking, causing Ds to
increase as T 22 as the temperature is lowered. For a Fermi gas, we thus
expect the minimum Ds to occur near TF, before Pauli blocking
becomes effective. Correspondingly, the coefficient Csd characterizing
spin drag is expected to reach a universal maximum value, given by the
Fermi rate EF/B, where EF~B2k2

F

�
2m is the Fermi energy.

In our experiment, we prepare an equal mixture of the two lowest
hyperfine states (‘spin up’ and ‘spin down’) of fermionic 6Li in a
cylindrically symmetric atom trap4,20,21. The confinement along the
axis of symmetry is harmonic, with frequency vz. We separate the
two spin components along the axis of symmetry of the trap (see
Methods Summary), and turn on strong interactions between unequal
spins by quickly increasing the magnetic field to a Feshbach resonance
located at 834 G. The confining potential of the trap forces the two
clouds of opposite-spin atoms to propagate towards each other, estab-
lishing a spin current. Measurements are made by selectively imaging
the two spin components.

Figure 1 shows the collision between the two spin domains on
resonance. The clouds bounce off each other and essentially comple-
tely repel each other. Owing to the axial trapping potential, the clouds
return after the collision, and we observe several oscillations in the
displacement d 5 Æz"æ 2 Æz#æ, where Æz"(#)æ is the centre of mass of the
spin-up (spin-down) cloud. After the oscillations have decayed, the
displacement decreases to zero monotonically, on a timescale of the
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order of one second, which is an extremely long time compared to the
trapping period (44 ms). The underlying explanation for spin current
reversal and the slow relaxation can be found in the extremely short
mean free path and the high collision rate between opposite-spin
atoms at unitarity. According to the above estimate, the spin diffusivity
is approximately B/m, which for 6Li is (100mm)2 s21. The atom clouds
in the experiment have a length of the order of 100mm, and it takes
them of the order of a second to diffuse through each other. So we are
indeed observing quantum-limited spin diffusion. The initial bounces
will occur when the mean free path of a spin-up atom in the spin-down
cloud is smaller than the spin-down cloud size, that is, when the
mixture is hydrodynamic. Instead of quickly diffusing into the spin-
down region, it is then more likely that the spin-up atom is scattered
back into the spin-up region, where it can propagate ballistically.

After long evolution times, the oscillations shown in Fig. 1 have been
damped out, and the displacement between the centres of mass is
much smaller than the widths of the clouds. The relaxation dynamics
can then be described by linear response theory, giving access to the
spin transport coefficients. The spin drag coefficient Csd is defined as
the rate of momentum transfer between opposite-spin atoms12,14, and
is therefore related to the collision rate. From the Boltzmann transport
equation, the relaxation of the displacement d near equilibrium follows
the differential equation22

C sd
_dzv2

z d~0

in the case of strongly overdamped motion realized here. Fitting an
exponential with decay time t to the displacement gives the spin drag
coefficient of the trapped system as C sd~v2

zt. In the deeply degenerate
regime, the relationship between the measured and the microscopic
spin drag coefficient might be affected by a weak enhancement of the
effective mass23 and the attractive interaction energy between the
clouds10,22,24.

The spin drag coefficient is found to be greatest on resonance, and thus
spin conduction is slowest on resonance (see Supplementary Informa-
tion). On resonance, Csd in a homogeneous system must be given by a
function of the reduced temperature T/TF times the Fermi rate EF/B. At
high temperatures, we expect the spin drag coefficient to obey a universal
scaling C sd!nsv! EF

B
T=TFð Þ{1=2. In Fig. 2 we show the spin drag

coefficient as a function of T/TF; Csd is normalized by EF/B, where EF

and TF are the local values at the centre of total mass. We observe T21/2

scaling for T/TF . 2, finding C sd~0:16 1ð Þ EF
B

T=TFð Þ{1=2. At lower
temperatures, we observe a crossover from classical to non-classical
behaviour as the spin drag coefficient reaches a maximum of approxi-
mately 0.1EF/B near the Fermi temperature. We interpret this saturation
of the spin drag coefficient as a consequence of Fermi statistics and
unitarity4,5, as s and v approach values determined by the Fermi wave-
vector kF. The spin drag coefficient is inversely proportional to the spin
conductivity, which describes the spin current response to an external
spin-dependent force. Near the Fermi temperature, the maximum spin
drag coefficient corresponds to a minimum spin conductivity of the
order of kF/B. This is the slowest spin conduction possible in three
dimensions in the absence of localization.

At low temperatures, the spin drag coefficient decreases with
decreasing temperature. Reduced spin drag at low temperatures is
expected in Fermi liquids owing to Pauli blocking11,18,22,24,25, and is also
expected in one-dimensional Fermi gases26. In the case of collective
density (rather than spin) excitations, it was shown that pairing cor-
relations enhance the effective collision rate dramatically as the tem-
perature is lowered6. The effect of pairing on the spin drag coefficient
may be qualitatively different. In a simple picture, spin currents require
the flow of unpaired atoms, whereas collective density excitations
affect paired and unpaired atoms alike.

Comparing the relaxation rate to the gradient in spin density allows
us to also measure the spin diffusivity Ds. At the centre of the trap, the
spin current density Js is given by the spin diffusion equation27
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Figure 1 | Observation of spin current reversal in a resonant collision
between two oppositely spin-polarized clouds of fermions. a, b, Total
column density (a) and the difference in column densities (b: red, spin up; blue,
spin down) during the first 20 ms after the collision. The central column
densities here are typically 7 3 109 cm22. Strong repulsion is observed that
leads to a high-density interface. c, The centre of mass separation initially
oscillates at 1.63(2) times the axial trap frequency of 22.8 Hz (see
Supplementary Information) before decaying exponentially at later times. The
initial atom number per spin state is 1.2 3 106, and the temperature 200 ms
after the collision and later is 0.5TF, with TF the Fermi temperature at the centre
of each cloud. d, The trapping potential V is harmonic along the symmetry axis.
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Figure 2 | Spin drag coefficient of a trapped Fermi gas with resonant
interactions. The spin drag coefficient Csd is normalized by the Fermi rate EF/B
at the trap centre, whereas the temperature is normalized by TF 5 EF/kB. We
find agreement between measurements taken at three different axial trapping
frequencies, 22.8 Hz (red circles), 37.5 Hz (blue triangles) and 11.2 Hz (black
squares). The data for T/TF . 2 fit to a T 21/2 law (solid line). Dashed line, a
power law fit for T/TF , 0.5 to show the trend. Each point is a mean from
typically three determinations of Csd, each obtained from a time series of about
30 experimental runs and weighted according to the standard deviation from
fitting error and shot to shot fluctuations. Error bars, 61s.e.
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Js~{Ds
L n:{n;
� �

Lz

where n"(#) is the density of spin-up (spin-down) atoms. We calculate
Js using the trap-averaged velocity as Js~

1
2 n:zn;
� �

_d, where the
densities are evaluated at the centre of total mass.

We find that the spin diffusivity is at a minimum when interactions
are resonant (see Supplementary Information). The increase in spin
diffusivity for positive scattering length a, as well as the decrease in spin
drag, argues against the existence of a ferromagnetic state in repulsive
Fermi gases, for which diffusion should stop entirely9,11. Figure 3
reports the measured spin diffusivity as a function of temperature at
unitarity. In the high-temperature limit on resonance, one expects
Ds / v/ns / T 3/2. At high temperatures, we indeed find this temper-
ature dependence, with a fit giving Ds~5:8 2ð Þ Bm T=TFð Þ3=2 for
T/TF . 2. In the degenerate regime, the spin diffusivity is seen to attain
a limiting value of 6.3(3)B/m.

When comparing these results to theoretical calculations, it is
important to account for the inhomogeneous density distributions
and velocity profiles. For a homogeneous system on resonance, and
at high temperatures compared to the Fermi temperature, we predict
Ds~1:11 B

m T=TFð Þ3=2 and C sd~0:90 EF
B

T=TFð Þ{1=2 (see Supplemen-
tary Information). The measured spin drag coefficient is smaller by a
factor of 0.90/0.16(1) 5 5.6(4) while the spin diffusivity is larger by
about the same factor, 5.8(2)/1.11 5 5.3(2), compared to a homogen-
eous system at the density of the centre of total mass. These factors
reflect the inhomogeneity of the system and agree with an estimate
from the Boltzmann transport equation (see Supplementary Informa-
tion). The emergence of a superfluid core at our lowest tempera-
tures will further modify the ratio of trap-averaged to local transport
coefficients.

Finally, the measured transport coefficients give for the first time
access to the temperature dependence of the spin susceptibility, xs(T),

in strongly interacting Fermi gases. Defined as xs~
L n:{n;
� �

L m:{m;

� � , the

spin susceptibility describes the spin response to an infinitesimal effec-
tive magnetic field or chemical potential difference m"2 m# applied to
the gas, and is a crucial quantity that can discriminate between differ-
ent states of matter10. In a magnetic field gradient, particles with
opposite spin are forced apart at a rate determined by the spin con-
ductivity ss, while diffusion acts to recombine them. The balance
between the processes of diffusion and conduction therefore deter-
mines the resulting magnetization gradient, a connection expressed

in the Einstein relation11 xs 5 ss/Ds. Assuming the standard rela-
tion11,14 ss 5 n/(mCsd),

xs~
1

mdv2
z

L n:{n;
� �

Lz

where
L n:{n;ð Þ

Lz is evaluated near the trap centre. The inhomogeneous
trapping potential does not affect the measurement of xs in the hydro-
dynamic limit at high temperatures (see Supplementary Information).
Close to the transition to superfluidity, interaction effects may modify
the relation between ss and Csd.

Figure 4 reports our findings for the spin susceptibility at unitarity, as
a function of the dimensionless temperature T/TF. At high tempera-
tures, we observe the Curie law xs 5 n/(kBT), where kB is Boltzmann’s
constant. In this classical regime of uncorrelated spins, the susceptibility
equals the (normalized) compressibility of the gas n2k 5 hn/hm that
we also directly obtain from our profiles. At degenerate tempera-
tures, the measured spin susceptibility becomes smaller than the nor-
malized compressibility. This is expected for a Fermi liquid, where

xs~
3n

2EF

1
1zFa

0
and k~

3
2nEF

1
1zFs

0
with Landau parameters Fs

0 and

Fa
0 describing the density (s) and spin (a) response10. The spin suscepti-

bility is expected to strongly decrease at sufficiently low temperatures in
the superfluid phase, as pairs will form that will not break in the pres-
ence of an infinitesimal magnetic field. It is currently debated whether
the strongly interacting Fermi gas above the superfluid transition tem-
perature is a Fermi liquid23 or a state with an excitation gap (pseudo-
gap)28,29. The opening of a gap in the excitation spectrum would be
revealed as a downturn of the spin susceptibility below a certain tem-
perature. Such a downturn is not observed in xs down to T/TF < 0.2,
and therefore our spin susceptibility data agree down to this point with
the expected behaviour for a Fermi liquid.

In conclusion, we have studied spin transport in strongly interacting
Fermi gases. The spin diffusivity was found to attain a limiting value of
about 6.3B/m, establishing the quantum limit of diffusion for strongly
interacting Fermi gases. Away from resonance, the diffusivity increases.
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Figure 3 | Spin diffusivity of a trapped Fermi gas. Shown is the spin
diffusivity on resonance (Ds, normalized by B/m; filled circles) as a function of
the dimensionless temperature T/TF. At high temperatures, Ds obeys the
universal T 3/2 behaviour (solid line). At low temperatures, Ds approaches a
constant value of 6.3(3)B/m for temperatures below about 0.5TF, establishing
the quantum limit of spin diffusion for strongly interacting Fermi gases. Error
bars, 61s.e.
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This casts doubt on the possibility of stabilizing a ferromagnetic gas on
the repulsive side of the Feshbach resonance9, which would require a
vanishing diffusivity11. The observed slow relaxation of spin excitations
is a likely explanation for the surprising—possibly non-equilibrium27—
profiles in spin-imbalanced Fermi gases reported in ref. 30, which did
not agree with equilibrium measurements by other workers20,21,31. Our
measurements of the temperature dependence of the spin susceptibility
are consistent with a Fermi liquid picture, and do not reveal a pseudo-
gap. An interesting subject for further study is whether spins are still
able to diffuse through the superfluid, or whether they travel around it,
avoiding the superfluid owing to the pairing gap.

METHODS SUMMARY
The spin mixture is initially prepared at 300 G. To separate the spin components,
we reduce the magnetic field to 50 G, where the magnetic moments of the two spin
states are unequal, and apply two magnetic field gradient pulses. We then bring the
total magnetic field to the Feshbach resonance in about 2 ms.

To reach low temperatures during the approach to equilibrium, evaporative
cooling is applied, at 834 G, by gradually lowering the depth of the optical dipole
trap. To reach high temperatures, we heat the atoms by switching off the optical
dipole trap for up to 3 ms to allow the atom clouds to expand before recapturing
them. We then set the final depth of the dipole trap so that the atom number and
the temperature remain nearly constant during the approach to equilibrium.

Spin selective imaging is performed by means of in situ absorption or phase
contrast imaging using two 4-ms imaging pulses separated by 6ms. These images
give the column densities of each spin state, from which we obtain the three-
dimensional densities by way of an inverse Abel transform21. The gradient in
the spin density is obtained from a linear fit to the polarization versus z.

We determine the temperature of the clouds by fitting the density versus poten-
tial energy in the vicinity of z 5 0 (but for all values of the radial coordinate r) to the
equation of state of the unitary Fermi gas, measured recently by our group32. The
trapping potential itself is determined by summing the densities of hundreds of
clouds, using the known axial, harmonic trapping potential to convert equidensity
lines to equipotential lines and fitting the result to an analytic model.
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